
BOM–Lazy: A Variability-Driven Framework for Software Applications
Production Using Model Transformation Techniques

Abel Gómez
Dep. of Information Systems and Computation

Universidad Politécnica de Valencia
Valencia, Spain

agomez@dsic.upv.es

Ma Eugenia Cabello
Faculty of Telematics

Universidad de Colima
Colima, México

ecabello@ucol.mx

Isidro Ramos
Dep. of Information Systems and Computation

Universidad Politécnica de Valencia
Valencia, Spain

iramos@dsic.upv.es

Abstract—This paper presents Baseline Oriented Modeling–
Lazy (BOM–Lazy): an approach to develop applications in a
domain, Expert Systems, by means of Software Product Lines
and model transformations techniques. A domain analysis
has been done on the variability of Expert Systems that
perform diagnostic tasks in order to determine the general
and individual features, (i.e. common and variants features) of
these systems. The variability of our Software Product Line
is managed by means of models and model transformations;
and the Production Plan is automatically generated and driven
by the variability model and the core assets (the generic
architecture) of the domain, in order to produce the base
architecture of the Software Product Line.

Keywords-Software Product Lines; Variability Management;
Model Transformations; Software Architectures; Diagnostic
Expert Systems

I. INTRODUCTION

Expert Systems (ES) are a family of software products
that are gaining great importance in recent years [13]. They
are applications that can be used to simulate the behaviour
of experts when they solve a problem in an specific domain.
Such systems try to capture the knowledge and decisions
of experts, improving the speed and the quality of the
answers that are obtained, and increasing the productivity
of the domain experts. ES have been widely used in several
fields of our lives: medicine, education, military intelli-
gence, aeronautics, archeology, agriculture, law, geology,
electronics, computer science, telecommunications, etc. That
is why they are becoming an important reference point in
decision-making processes, especially in systems in charge
of diagnostic tasks. However, the development of this kind of
systems is complex because the basic elements that conform
their architecture vary not only in their behaviour, but also
in their architecture. That is why there is an increasing need
in supporting them properly.

The changing nature of technology leads us to need
multiple versions of the same or similar application in short
time periods. Because of that, Software Engineering must
provide the tools and methods which allow us to develop a
family of products with different capabilities and adaptable
to changeable situations, in place of developing only a single

product. Under these circumstances, the Software Product
Line (SPL) [8] concept arises with the aim of controlling
and minimizing the high costs of the software development
process. This approach is based on the creation of a design
that can be shared among all the members of a family of
programs within an application domain. This way, a design
that has been done explicitly for a product can get benefit
from the common assets (models, components, code. . .)
that can be reused in different products, reducing costs and
development time.

In order to develop an ES, the SPL approach is more
adequate than the traditional one: this family of systems
involve a wide range of application domains, with different
features, that vary from a case study to another. Moreover,
SPL make easier the development of software products for
several target platforms and technologies.

This work integrates different technical spaces [16]: Ex-
pert Systems (ES), Software Product Lines (SPL) and the
Model-Driven Architecture (MDA, [18]), as the technical
framework. MDA promotes to separate the description and
the functionality of a system (Platform Independent Model,
PIM) from its implementation (Platform Specific Model,
PSM). MDA suggests to define and use models at differ-
ent abstraction levels as the main assets of the software
development process. These models can be manipulated and
refined (by means of model transformations) in successive
steps to obtain the final implementation of the system. The
standard that the OMG proposes to define these model
transformations is the Query / Views / Transformations
(QVT, [19]) standard. This way, in our approach we use the
tools that are supported on the MDA framework to represent
and manage the variability of the SPL by means of domain
models and their transformation to architectural models. In
the end, this infrastructure allows us to produce a SPL of ES
at design level using the architectural specification language
PRISMA [4] as the target domain. The PRISMA framework
[21] automatically compiles the architectural configurations
and executes them by using a middleware built on top of
the .NET platform.

This document is structured as follows: section II de-

«Module» «Module»«Module»

User
Interface

Inference
Motor

Knowledge
Base

Figure 1. Generic Architecture of Expert Systems

scribes the variability found in the Expert Systems technical
space; section III explains how this variability is managed in
our approach. Section IV describes how our ideas have been
captured in a prototype. Finally, section V describes some
related works and section VI presents our conclusions.

II. VARIABILITY OF THE DIAGNOSTIC EXPERT SYSTEMS
DOMAIN

A subset of the Expert Systems domain has been chosen
to describe our approach: the ES that are used in diagnostic
tasks, the so-called Diagnostic Expert Systems (DES). The
diagnosis of an entity lies on the evaluation of its state by
interpreting its properties. A field study about diagnostic
systems has been done [6] to identify the key variability
points. This study allows us to know the DES behaviour
and structure in several specific domains. The remainder of
this paper will refer to two paradigmatic cases: systems for
medical diagnosis and systems for educational diagnosis.

In the medical diagnosis example, the entity to be di-
agnosed is the patient and the result of the process is
the disease he/she suffers. First, a clinical diagnosis is
performed, which must be validated then by a laboratory-
based diagnosis. In the end, both diagnosis are merged in
a final diagnosis where the previous ones are taken into
account. Thus, we can identify three basic functionalities:
get laboratory diagnosis, get clinical diagnosis, and get
diagnosis. The first one is used by the laboratory assistant
and the last ones are used by the doctor. In this case, the
properties of the entities considered in the process vary
during the whole process, which implies the existence of
several hypotheses that must be evaluated to determine the
valid one using differential reasoning.

In the educations reasoning example the entity to be diag-
nosed is a post-graduate educational program where several

quality criteria are evaluated, and the result of the diagnosis
is the advance of the given program. The properties of the
entities remain the same throughout the diagnostic process,
therefore only one hypothesis is created applying deductive
reasoning. In this case the DES only performs one task: get
program advance, which is invoked by the user of the tool.

A. Diagnostic Expert Systems Generic Architecture

In SPL, there are parts that are shared among all the
products, but some other parts vary from one product to
another. The common parts are represented by the generic
architecture, which captures the shared functionality. The
variable part shows additional features that are specific for
some products, and such parts are represented by the base
architecture. The generic architecture of DES is expressed
in our approach by a modular model made up of three basic
modules (see Fig. 1):

• Inference Motor module. This module contains the
inference process that solves a problem in a specific
domain.

• Knowledge Base module. The Knowledge Base module
contains the knowledge about the domain

• User Interface module. This module allows the com-
munication between the user(s) and the system.

The generic architecture is used as the shared structure
of an application that is member of the product line, but,
there also exist additional features that are particular to an
specific application. This implies the creation of an specific
base architecture when a product of the SPL is obtained
from the generic architecture. However, the base architecture
that is generated from the generic architecture is not unique,
because systems vary not only in their structure but also in
their behaviour as explained in the following section.

B. Diagnostic Expert Systems Structural Variability

To illustrate how the architectural elements of a DES vary
in their structure, we have modeled the functional require-
ments that the final product must satisfy using UML Case
Diagrams. These diagrams show the different functionalities
that the user expects from the system and how the system

Doctor

Lab. Assistant

Get Diagnosis

Get Clinical Diagnosis

Get Laboratory Diagnosis

(a)

Doctor
User Interface

Lab. Assistant
User Interface

Deductive
Inference Motor

Diagnostic
Connector

C. Diagnostic
Connector

L. Diagnostic
Connector

Deductive
Knowledge Base

(b)

Figure 2. Medical diagnosis use case diagram (a) and its corresponding base architecture (b)

Medical diagnosis Educational diagnosis

Level 0 properties Level 1 properties Hypotheses
Deductive reasoning Di�erential Reasoning AND

Figure 3. Graph describing the inference processes for medical diagnosis
and educational diagnosis

interacts with its environment. In particular, the structure of
the architectural elements vary according to the number of
use cases, the number of actors and the number of use cases
that are accessed by each actor.

Fig. 2 shows the use case diagram for the medical diagno-
sis domain together with its corresponding base architecture.
As Fig. 2a shows, the ES for medical diagnosis of our case
study has two actors: doctor and lab. assistant. The first
one uses the system to get clinical diagnosis and the final
diagnosis; and the second one uses the system to get the
laboratory diagnosis. These use cases affect the final base
architecture of the system. Fig. 2b shows, for example, that
a user interface module is used for each one of the actors
shown in the diagram.

C. Diagnostic Expert Systems Behavioral Variability

Behavioral variability of the architectural elements of an
ES depends on the type of diagnosis, and therefore the
reasoning to be used. As presented in the previous section,
the inference process to apply is defined according to the
reasoning (it can be deductive or differential). Moreover, we
say that the inference process is static if there is only one
hypothesis to evaluate and the entities involved keep the
same properties throughout the whole diagnostic process.
However, if the properties of the entities change during

the process and there is more than one hypothesis, we say
that it is a dynamic process. This way, medical diagnosis
is a dynamic process that requires differential reasoning
(Fig. 3-left); but educational diagnosis is an static process
which requires to apply deductive reasoning (Fig. 3-right)
[5]. Thus, the base architecture for ES in the medical
diagnosis domain will have a Differential Inference Motor
component. The behaviour of this component will differ
from the behaviour of the inference motor of the ES in the
educative diagnosis domain, which will have a Deductive
Inference Motor component. Fig. 3 represents the medical
and educative diagnosis processes as inference graphs.

III. VARIABILITY MANAGEMENT

Variability management is the key point to develop our
family of DES. Variability among the products of a SPL
can be expressed in terms of features [15]. In BOM–
Lazy (Baseline Oriented Modeling–Lazy) [6] the observed
features in the diagnostic processes and the user require-
ments are considered as the first group of variability points.
Additionally, a second group of variability points arise:
the variability that emerges from the application domain’s
properties. Thus, variability is managed in two stages. The
first stage manages variability by using a feature model,
which is used to obtain an specific base architecture. The
second stage manages the variability of the properties and
decorates this specific base architecture with the application
domain features, conforming the final product.

A. BOM–Lazy Production Plan overview

The Production Plan of our SPL taking the BOM–Lazy
approach is shown in Fig. 4 by using SPEM notation [17].
The Production Plan starts (task 1) when the features of
the first variability (the domain variability) are obtained
from the application engineer expressed as instances of the
Domain Variability Model (DVM). Next (task 2), a skeleton
architecture (the base architecture) is built by executing
a QVT–Relations transformation using the DVM instances

UI2

UI1 KBC1

C2
C3 IM

UI2

UI1 KBC1

C2
C3 IM

UI IM KB

«in»

«in»

QVT transformation

«out»

Obtain domain
features

Build skeleton
(Execute T1)

QVT transformation

Build PRISMA model
(Execute T2)

Obtain application
domain features

«in»

«in»

«in»

«in»

«in»

«out»

«out»

«out»

Base (skeleton) Architecture
(Component–Connector View)

PRISMA Architectural Model
(PRISMA Component–Connector View)

Application
Domain Features

Domain Features

Application
Engineer

Application
Engineer

DVM

ADVM

«in» «in» «out»Compile Archi-
tectural model

Compiled Architectural
model

«in» «out»Create executable
system

Executable
system

T1
scope(1)

(3) (4) (5) (6)

(2)

Figure 4. BOM–Lazy Production Plan

Figure 5. Feature model of the SPL (Domain Variability Model)

and the generic architecture model. This first transformation
(called T1) creates a base architecture that corresponds to
the specific product of our SPL family. Additionally, the
Application Domain Variability Model (ADVM) is used to
define the features of the application domain (task 3). The
instances of the ADVM are used to build the final model
(task 4) by executing the QVT–Relations transformation
(the second transformation, T2). This way, the base archi-
tectural model is automatically transformed to a PRISMA
architectural model [4]. Finally, the PRISMA architectural
model is compiled (task 5) by using the PRISMA-MODEL-
COMPILER [21]. This tool automatically generates final
product of our SPL: a fully functional C# .NET program that
can be directly executed by using the PRISMA-Middleware.

The remainder of this paper will focus only on the first
variability (highlighted in Fig. 4 as T1 scope), which is re-
lated with the diagnostic process and the user requirements,
as they define the behaviour and the structure of the ES
as described in section II. The management of the second
variability will remain unexplained in this paper as it is out
of its scope and it is dealt with similar process.

B. Domain Variability Management
The Feature Model, our Domain Variability Model

(DVM), represents the features of the first variability of
the DES (our SPL). The selected variant is represented as
an instance of the Domain Conceptual Model (DCM). The
DCM is an intermediate model used to capture the selected
features of the DVM. These features are used to configure
the base architecture. Fig. 5 shows and screenshot of our
feature model editor. In the image the feature model of the
SPL for DES is described. Our prototype uses a variant of
the Czarnecki-Eisenecker notation [10]. This notation for
feature modeling allows feature cloning and typed feature
attributes. Feature attributes can be used to identify cloned
features.

IV. BOM IN PRACTICE

This section describes how to deal with the variability in
the development of DES by using SPL and MDA techniques.

In BOM–Lazy the transformation in charge of building
the base architectures is called “T1”. This transformation
is driven by the first variability that was described in
section III. The transformation generates an specific base
architecture (a component–connector architectural model)
from a modular model (the generic architecture, which
describes the common parts of the family of DES) and
a domain variability model which captures the variability
of the specific conceptual domain (DVM) as shown in the
highlighted part of Fig. 4.

Fig. 6 depicts a simplified version of the modular view
metamodel, which is used to describe the generic architec-
tures. It shows that a model has a set of modules (which
can also have different functions) that are linked to other
modules by several kinds of relationships (only the Use
relationship is represented for simplicity purposes).

To define an specific variant of the SPL for DES, the
generic architecture must be configured with the particular
features of the conceptual domain. This is done by means of
the feature model (DVM) presented in section III, which is
finally represented as a UML class diagram (the DCM). This
representation allows us to easily define model instances in
nowadays modeling tools. The translation of the Feature
Model to a class diagram is automatically performed by
our prototype and is described in detail in [14]. Fig. 7
shows what this model looks like by using the class diagram
representation. Thus, an instance of the DVM is a set of

Figure 6. Simplified metamodel of the modular view.

Figure 7. Domain Variability Model expressed as a class diagram (Domain Conceptual Model)

object that are instances of such model.
Finally, Fig. 8 shows the simplified metamodel to build

architectural models. An architectural model has a set of
components and a set of connectors. Components provide
services through a set a ports. Connectors are in charge of
linking the different ports of the components by means of
their roles.

A. Transformation patterns

In order to define the relationships among the different
models and metamodels we have used the Query/Views/-
Transformations language (QVT) [19] as proposed by the
OMG in their Model–Driven Architecture proposal. The
transformation establishes the correspondences among the
elements of the source and the target models. Table I
describes in a simplified way the relationships that have been

Figure 8. Simplified version of the Component–Connector metamodel

identified, together with the elements that each one involves.
To define the correspondences among the different domain

we have taken into account good practices for software
development [20] in order to increase the quality of the
design of the generated software architecture. Some of this
practices and design decisions that the rules describe are the
following:

• ModulesModel2ComponentsModel. A design must de-
fine a hierarchical organization that controls software
components in a smart way. In order to satisfy this
criterion, this rule transforms the root element of the
modular metamodel (ModulesModel), which contains
the rest of the elements of the metamodel, to the
root element of the component-connector metamodel
(CCModel). The rule assigns the name of the source
element to the target element.

• UseCase2Connector. A design should be modular; that
is, the software should be logically partitioned into ele-
ments that perform specific functions and subfunctions.
Use cases constitute a partition of the system based on
functionality. Thus, to achieve this requirement the rule
transforms each use case to a connector in charge of
coordinating the different components of the use case.
This way, there is a one-to-one relationship between
use cases and connectors.
Fig. 9 shows the UseCase2Connector rule using
the graphical notation of the QVT language. This rule
creates, for each one of the use cases of the source
variability model one connector of the component–
connector model. The name of such connector stands
for the concatenation of the use case name and the suf-

Table I
TRANSFORMATION RULES AND INVOLVED ELEMENTS

Involved elements
Relation name Variability Model Modular Metamodel Component-Connector Metamodel

ModulesModel2ComponentsModel - ModulesModel CCModel
UseCase2Connector UseCase - Connector
Module2Component Actor, UseCase, EntityViews / Reasoning Module Component

Module2RolePort UseCase Module Role, Port
Function2Service - Function Service
Function2Relation - Function Relation

varModel:DomainConceptualModel
«domain»

connector : Connector

name = ucname + ‘Connector’

modulesModel: ModulesModel
«domain»

name = modelName

tcomponents

useCase: UseCase

name = ucname

UseCase

componentsModel : CCModel

name = modelName

«domain»

ccdomain

E

Module2Component(modulesModel, varModel, componentModel, connector, useCase)
where

UseCase2Connector

Figure 9. Graphical representation of the UseCase2Connector QVT
relation

fix “Connector”. The modular domain (mdomain) and
the variability model domain (dcmdomain) are de-
fined as checkonly (as the “C” attached to the arrow
of the domain indicates). This keyword is used to assure
that at least an object validating the pattern exists. If no
object validating the pattern exists the rule will not be
applied (as the transformation is executed in the direc-
tion of ccdomain). In turn, the component–connector
domain (ccdomain) is defined as enforced (as
the “E” next to the arrow describes). The enforce
modifier states that the pattern must be always vali-
dated. If there are not objects that make possible to
validate the pattern, the rule must create them until the
application of the rule is possible. Finally, the where
clause states that the Module2Component relation
must be considered as the post-condition of the current
rule (UseCase2Connector). Thus, this rule should
be properly applied after the UseCase2Connector
relation is checked.

• Module2Component. The generic architecture of ES
is usually conformed by three modules. This rule
transforms the Knowledge Base and Inference Motor
modules to the Knowledge Base and Inference Motor
components respectively. It also establishes their type
(deductive or differential) according to the Reasoning
and EntityViews elements of the variability model. Any
other additional module of the generic architecture
leads to a new component that represents it using the
same name in the final base architecture.
With the aim of satisfying the following design require-
ment: A design should lead to interfaces that reduce the
complexity of connections between modules and with
the external environment, the User Interface module
is transformed into as many components as actors
appear in the domain variability model. This way, a
relationship one-to-one is defined between the actors of
the source model and the user interfaces in the target
model.

• Module2RolePort. The criterion Uniqueness of the
knowledge base indicates that knowledge must be

unique for the entire system. In order to meet this
requirement, there is only one Knowledge Base com-
ponent in our base architecture. Given that for each
use case exists a different view of the Knowledge
Base, we must merge each one of these views. This
is represented in the Knowledge Base component by
adding a port that allows the communication of such
views with the rest of the components. To allow this
communication it is also necessary to add the corre-
sponding roles to the adequate connectors. Therefore
a one-to-one relationship is defined between use cases
and the Knowledge Base ports, which also implies a
one-to-one relationship between use cases and the roles
of the different connectors. This rule also creates the
corresponding ports in the Inference Motor and User
Interfaces components, and their corresponding roles
in the involved connectors.

• Function2Service. This rule creates a new service
on the corresponding component of the Component–
Connector model. This service is generated from a
given function of a module of the modular model. The
new service is created with the same name and type of
the source function.

• Function2Relation. This rule states that a function of a
module of the source model (ModuleModel) will gener-
ate a Relation element in the target model (CCModel).
This Relation will link a connector with its correspond-
ing component in the Component–Connector model.

B. Transformation execution

Our prototype is built on top of the Eclipse platform, and
makes use of the Eclipse Modeling Framework [12] and
the Graphical Modeling Framework [11] tools to represent
the different models and to build the different editors.
Furthermore, it integrates a QVT transformations engine to
easily execute the model transformations.

Different graphical editors have been developed to vi-
sually represent the models that are involved in the T1
transformation. Fig. 10 shows a tree editor with the DCM
instance of the medical diagnosis example. Fig. 11 shows the
second software artifact that takes the T1 transformation: the
modular view model (generic architecture of DES). Figure
shows an screenshot of the Modular View editor of the

Figure 10. Domain Conceptual Model instance

Figure 11. Expert Systems modular miew model

BOM–Lazy prototype. Finally, Fig. 12 shows an screen-
shot of the result model represented on the Component–
Connector View editor.

V. RELATED WORKS

Software Product Lines have been an important discussion
topic in the last decade. There are many studies on this
subject. Our research is related to the following SPL ones:

• In [3] Batory et al. capture the domain features in a
Feature Model. In BOM we capture features in two
kinds of Feature Models. In our research, we observed
that the variability problem is not solved by means of
a unique feature model and the monotonic gluing of
this features. We have taken a new approach, which
manage the variability in two phases (one by building a
base architecture using the domain features, and another
one by decorating these base architectures with the
application domain features) in order to obtain the final
product.

• In [22] Trujillo uses Feature Oriented Programming
(FOP) as a technique for inserting features into XML
documents by means of XSLT templates. In BOM-
LAZY we use this technique but at the model level (i.e.
we use Feature Oriented Modeling) by means of QVT–
Relations Transformations. The features are inserted on
the skeleton model in order to obtain the PRISMA
architecture model.

Figure 12. Resulting base architectural model

• Clements and Northrop use in [7] the SPL development
approach, considering a clear division between domain
engineering and application engineering phases for the
reuse and the automation of the software process. In
BOM, we have used this approach to develop our SPL.

• Ávila-García et al. [1] use process modeling in SPEM
to pack reusable assets. In our approach we use this
OMG standard too when we model the Production Plan
of the SPL.

• In [2] Bachmann et. al. propose to separate the vari-
ability declaration of the affected assets in separate
artifacts. In BOM, the specification of the variability
and the functionality are captured in different feature
models. The use of instances of such feature models
allows the user to input the information of the domain
features. Those features allow to build the associated
assets, or to define the application domain features in
order to configure the final application.

• Czarnecki et. al. propose in [9] a notation for
cardinality-based feature modeling. In this sense, our
work shares most of this notation as it is widely
known and used, but we have included some variants.
Moreover, we have provided tooling support for this
notation and we have integrated it in our prototype.

VI. CONCLUSIONS

This paper describes how to develop a Software Product
Line in an specific domain (Diagnostic Expert Systems in
this paper) by using Model–Driven techniques. The develop-
ment of such a kind of systems is a complex process because
of element that compose their architecture vary not only in
their behaviour but also in their structure. This situation im-
plies that several base architectures are obtained on the same
generic architecture. Our approach uses QVT–Relations as
the model transformations language to manage the variabil-
ity along the whole process. Our approach also enhances
the development of DES by applying SPL techniques, as
they are useful when the members of a family of programs
share a common design. This way, an specific design can be
used in different products, reducing costs, time to market,
effort and complexity. By applying MDA techniques, we
are able to build systems that are platform-independent, and
we can think about them from the problem perspective and
not the solution perspective. This makes possible to apply
such solutions to different domains. Moreover, we provide
a framework with several technical spaces where modern
software development techniques coexist in a coordinated
way. It is noteworthy to point out that, although this paper
only describe the variability management for the first stage
of the development process of DES (as shown in section III),
the process continues til the base architecture is obtained.
The second stage has been also implemented and the base
architecture is then decorated with the application domain
features. The result of the second stage produces a final and

specific architecture. In our SPL the final architectural model
is a PRISMA [4] model. PRISMA is a framework to describe
architectural models that provides the PRISMA-MODEL-
COMPILER tool [21]. This tool is able to automatically
generate executable C#.NET code. This way, our proposal
covers the whole development process .

Furthermore, in traditional approaches, the group of base
architectures is defined and implemented at design time of
the SPL (domain engineering) and it remains unchanged
throughout the whole life-cycle of the SPL (application
domain). In the BOM–Lazy approach, the use of the T1
transformation allows us to move the creation of the base
architectures to the application domain phase. This allows
us to define the base architectures by using a set of rules
that encode patterns of good design practices (as well as
other design decisions), in a generic way. This avoids the
need to define all of them explicitly. As the LPS grows in
size, BOM–Lazy becomes an adequate approach to manage
variability, as it supposes a great work to build a priori the
base architectures for all the possible products of the SPL.
Thus, the main effort is done in the domain engineering
stage, where the acquired knowledge is formalized and
encoded in a set of declarative rules (the knowledge is
stored explicitly). So, it is not necessary to develop exten-
sively all the possible combinations of base architectures
(the knowledge is stored implicitly). That will increase the
efficiency on the application engineering phase, where each
base architecture is obtained only when it is needed by using
the explicitly stored knowledge.

VII. ACKNOWLEDGMENTS

This work has been supported by the Spanish Government
under the National Program for Research, Development
and Innovation MULTIPLE TIN2009-13838 and the FPU
fellowship program, ref. AP2006-00690.

REFERENCES

[1] O. Avila-García, A. Estévez, and J. L. Roda. Integrando mod-
elos de procesos y activos reutilizables en una herramienta
mda. In J. C. R. Santos and P. Botella, editors, JISBD, pages
483–488, 2006.

[2] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl,
B. Ramesh, and A. Vilbig. A meta-model for represent-
ing variability in product family development. In Software
Product-Family Engineering, pages 66–80. 2004.

[3] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated
analysis of feature models: Challenges ahead. Communica-
tions of the ACM, December, 2006.

[4] J. P. Benedí. Prisma: aspect-oriented software architectures.
PhD thesis, May 2008.

[5] M. E. Cabello and I. Ramos. Expert systems development
through software product lines techniques. In Information
Systems Development, pages 299–307. Springer US, 2009.

[6] M. E. Cabello Espinosa. Baseline-Oriented Modeling: An
MDA approach based of Software Product Lines for applica-
tions development. PhD thesis, Dec. 2008. http://hdl.handle.
net/10251/3793.

[7] P. Clements and L. Northrop. Software product lines: prac-
tices and patterns, volume 0201703327. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[8] P. Clements, L. Northrop, and L. M. Northrop. Software
Product Lines : Practices and Patterns. Addison-Wesley
Professional, August 2001.

[9] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
cardinality-based feature models and their specialization. In
Software Process: Improvement and Practice, page 2005,
2005.

[10] K. Czarnecki and C. H. Kim. Cardinality-based feature
modeling and constraints: A progress report, October 2005.

[11] Eclipse Organization. The Graphical Modeling Framework,
2006. http://www.eclipse.org/gmf/.

[12] EMF. http://download.eclipse.org/tools/emf/scripts/home.php.

[13] J. C. Giarratano and G. Riley. Expert Systems: Principles and
Programming. Brooks/Cole Publishing Co., Pacific Grove,
CA, USA, 1989.

[14] A. Gómez and I. Ramos. Cardinality-based feature models
and model-driven engineering: fitting them together. In Pro-
ceedings of the Fourth International Workshop on Variability
Modelling of Software-Intensive Systems, volume 37, pages
61–68. ICB-research report, 2010.

[15] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study.
1990.

[16] I. Kurtev, J. Bezivin, , and M. Aksit. Technical spaces: An
initial appraisal. In Tenth International Conference on Coop-
erative Information Systems (CoopIS), Federated Conferences
Industrial Track, California., 2002.

[17] Object Management Group. Software Process Engineering
Metamodel (SPEM), January.

[18] Object Management Group. MDA Guide Version 1.0.1. 2003.
http://www.omg.org/docs/omg/03-06-01.pdf.

[19] Object Management Group. MOF QVT Final Adopted Spec-
ification. Object Modeling Group, June 2005.

[20] R. S. Pressman. Software Engineering: A Practitioner’s
Approach. McGraw-Hill Higher Education, 2001.

[21] J. Pérez, N. Ali, J. A. Carsí, I. Ramos, B. Álvarez, P. Sanchez,
and J. A. Pastor. Integrating aspects in software architectures:
Prisma applied to robotic tele-operated systems. Information
and Software Technology, 50(9-10):969 – 990, 2008.

[22] S. Trujillo. Feature Oriented Model Driven Product Lines.
PhD thesis, School of Computer Sciences, University of the
Basque Country, March 2007.

http://hdl.handle.net/10251/3793
http://hdl.handle.net/10251/3793
http://www.eclipse.org/gmf/
http://download.eclipse.org/tools/emf/scripts/home.php
http://www.omg.org/docs/omg/03-06-01.pdf

	Introduction
	Variability of the Diagnostic Expert Systems Domain
	Diagnostic Expert Systems Generic Architecture
	Diagnostic Expert Systems Structural Variability
	Diagnostic Expert Systems Behavioral Variability

	Variability Management
	BOM–Lazy Production Plan overview
	Domain Variability Management

	BOM in practice
	Transformation patterns
	Transformation execution

	Related Works
	Conclusions
	Acknowledgments
	References

